

Assembly para PC

Assembly prático para arquitetura PC (Intel 80XXX)

Autor

Dorival Afonso Cardozo

Programador Assembly Intel desde 1987

27 anos programando com Assembly 8 Bits, 16 Bits, 32 Bits e 64 Bits

Desenvolvendo projetos em 8080,8086,8088,80386

 Curso de Assembly para PC, 16 Bits, 32 Bits, 64 Bits. Para Modo Real,
Windows, Kernel. Fase Avançada: Disassembly e Estudo de Vírus de

Computador.

Este tutorial é extremamente prático ! você vai aprender como escrever
seus primeiros programas em Assembly (Linguagem de Máquina) em
ambienteWindows e Modo Real.

Existe também vídeos após cada seção mostrando como executar o que
foi ensinado de forma prática (ao vivo), reserve todo dia um tempo
para ler este tutorial e ir praticando.
Você vai perceber que este tutorial não é sequencial, ou seja … o velho
método de apresentar instrução a instrução e ir explicando .. não ! não
é assim ! prefiro explicar os fundamentos e praticar com instruções
simples, para que o aprendizado possa ser intuitivo e escalar.

INTRODUÇÂO

Curso de Assembly para PC

Este curso online é um primeiro passo para entender a linguagem básica do

PC que utiliza Intel (80xx), depois deste curso espero que todos possam fazer

programas básicos e acompanhar a evolução do microprocessador Intel que

está junto com o PC e o Windows/DOS a tantos anos.

Compilador NASM32, FASM
Este curso será progressivo, então vou postar uma matéria
eventualmente, juntamente com o vídeo prático de como fazer o que
foi aprendido na prática, o compilador será o MASM32 e o FASM (Flat

Assembly), os 2 compiladores são bons, o primeiro (MASM32) não tem
recurso 64 bits, mas conhecendo-o, é fácil passar a usar o FASM (com
recrurso 64 bits), já que o básico da linguagem é o que interessa, e
o MASM32 tem bastante exemplos, e isto é ótimo.
NASM
Sim, existe um outro chamado NASM, que é bem popular no Linux,
mas todos compiladores fazem o mesmo serviço, e fazem muitobem,
que é de montar o código, e transformar em binário para o processador
executar.
O motivo pelo qual escolho o MASM32 para 32 bits é muito simples !
ele tem o maior arsenal de exemplos (que vi até agora) e é bem simples
de entender e usar, e tudo que se precisa quando esta começando é
entender as coisas e não sofrer tentando entender explicações.

8080/8086/8088/80XX

A história da intel começa a décadas atras, de fato ela passou a frente
de suas principais concorrentes que é a Motorola e a Zilog, a motoroloa
sempre foi, desde os anos 80 o processador mais bem falado do
mercado, esquentava menos, era mais barato,etc … mas por uma destes
ironias do destino, não foi parar no coração do PC. E o motivo, óbvio
que foi comercial, quando Bill Gates resolveu fechar acordo com a IBM
para fornecer o D.O.S. (Disk Operational System), tentou comprar o
CP/M da DIgital Research de Gary Kildal … mas .. Kildall sequer
atendeu a equipe da Microsoft, que na época era um bando de rapazes
com cara de nerd, de uma empresa minúscula chamada Microsoft ….
depois de dar com cara na porta da Digital Research (que era maior
que a microsoft), procurou outro sistema, o que se torno o MS-DOS,
desta vez eles foram atendidos e pagaram 50 mi dolares pelo sistema
que depois foi melhorado e se transformou no PC-DOS da ibm, e
vendido pela microsoft com o nome de MS-DOS, começava aí a fortuna
de Gates.

E o que tudo isto tem a ver com Microprocessador e Assembly ?
simples ! aquele sistema rodava no Intel 8086, era todo baseado em
interrupções de DOS e BIOS, o que hoje no WIndows chamamos de
IRP , que são chamados do kernel do WIndows para teclado, mouse,
disco, etc … no ambiente DOS chamava-se “Interrupção de teclado ou
Interrupção de disco,etc “.

Então o sistema baseado em Intel foi parar no coração do IBM-PC que
depois foi copiado a exaustão no mundo todo, e chegou no Brasil aos
milhões via Paraguay, quem se lembra da época, sabe que 90% dos PCs

eram copias do original, que chegavam via Ponte da Amizade no
Paraguay e custava 20% do original .. ahh . eo Sistema Operaiconal,
lógico, totalmente pirata também, que era o MS-DOS ou PC-DOS.

E acabou assim o reinaldo do Z-80 Zilog , que foi o procesasdor usado
na Apolo 11, o foguete que chegou a lua, tudo foi programado em
Assembly Z-80 da empresa Zilog em 1969, alias .. a Nasa libero o
código fonte em assembly, basta procurar na Internet, tudo em
Assembly, o pouso, a estabilidade , e a decolagem … tudo em baixo
nível Zilog, mas não foi suficiente par adominar o mercado de PCs.

A Apolo11 lançada para pousar na lua era toa controlada com

Assembly Z-80 Zilog, cuja instruções são bem semelhantes a

Intel do PC.

Já a Motorola impera na industria, e muita gente dizia que a qualquer
momento os PCs rodariam Motorola e não Intel, ledo engano, isto vem
sendo dito a décadas, da mesma forma que dizem que a linguagem
Cobol Morreu … poisé !

E foi assim, sendo o coração do sistema da Microsoft e IBM, a Intel
dominou o mundo e depois lançou seu Intel Pentil , um versão superior
ao barramento nos anos 80, e por enquanto, é o assembly mai susado
no mundos dos PC. Porém, quem der uma olhada nas isntruções
assembly da Zilog, vai perceber o quanto ela é semelhante aos
registradores da Intel, e talvez seja esta , parte da razão do imperio da
Intel.

REGISTRADORES

Vamos começar explicando registradores 16 Bits (ex. AX, BX, etc)
mesmo porque os registradores de 32 e 64 bits somente aumentam o
tamanho (óbvio !), então sabendo eles, basta “bater o olho” para saber
como usar 32 ou 64 bits.

PC ? Sim, vamos começar baseando os exemplo
no PC/WINDOWS/DOS , futuramente partiremos para o
mundo LINUX, não muda tanto, e esta é a vantagem de saber baixo
nível, o que vai mudar entre DOS/WINDOWS e LINUXsão as
chamados do sistema para realizar alguma tarefa, as operações de
movimento de valores, stack, segmentação de memória, manipulação de

registradores são inerentes ao microprocessador Intel,e portanto são
iguais para qualquer sistema operacional.

Juntamente com cada postagem, vou procurar Links que possam
adicionar conhecimento ao assunto, aliás, percebi que muita coisa está
em inglês, então vou aproveitar para ajudar o Wikipedia traduzindo
páginas sobre Baixo Nível (Assembly) para Português para que exista
também uma versão em língua portuguesa.

Para não complicar, e começar pelo fim, é bom ter
o WindowsXP instalado para começarmos a praticar … depois
passamos para tópicos avançados utilizandoWindows7/Windows8 ,
o WindowsXP é util , porque podemos utilizar oDEBUG.EXE que ainda
está contido nele, assim como manipulação de áreas que não estarão
sob supervisão do sistema, coisa que começou a ficar bem rígida a
partir do Windows vista, os Windows posteriores já não possuem
o DEBUG.EXE, ele será útil para praticarmos exemplos simples, este é
mais um motivo para ter oWindows XP rodando.

Logo no decorrer do curso, vamos utilizando um Debugger mais
avançado como oWinDBG, e até como fazer alguns programas para
anexar ao Kernel do Windows. Outra coisa, sim ! sou fã do Linux, e
muito mais que o Windows, mas como a maioria dos usuários utilizam
Windows, então o windows será mais utilizado.

Como funcionam os Registradores Assembly

O registradores armazenam valores, assim como as variáveis que
utilizamos em nossa linguagem de programação como (int valor = 5)
em assembly ficaria (MOV AX, 5). No entanto, não podemos sair
criando variáveis como em linguagem de alto nível como C++, existe
um limite de registradores para colocar valores, assim como outros
especiais que indicam offset e segmentos de memoria como (CS,

DS por exemplo), eles indicam que segmento de memoria o programa
esta rodando, e ainda o IP que indica que posição de memória está em
execução no momento.

Em 32 bits, utilizaremos EAX no lugar de AX, mas aprendendo como
utilziar os registradores de 16 bis (AX,BX,CS,etc), fica fácil entender
quando eles se transformam em 32 bits (EAX, EBX,ECX), e até quando
se transforma 64 bits.

AX.CX, DX, BX, SP, BP, SI, DI

Embora possamo atribuir a eles qualquer valor, alguns dele tem utilidade para

o sistema, por exemplo, o SP (stack pointer) é utilizado guardar o valor no

Stack, o que é Stack ? é uma área da memória onde são gravado valores via

PUSH, POP, CALL por exemplo, (veremos isto mais tarde)
Ainda existem mais registradores de segmento:

CS, DS, ES, FS, GS, SS
Assim como os registradores descritos anteriormente, alguns deles são

utilizados pelo ssitema como por exemplo o principal deles (CS Code

Segment), ele vai ter o valor exatamente do segmento da memória que o

programa atual está rodando (também veremos isto no decorrer do curso).
Existe também registradores extras chamados MMX que foi adicionado
em meados de 1997, e seu poder é fabuloso ! ele permite manipulação
de memoria gráfica de uma forma tão rápida que pode ser cofundida
com uma gravação analógica, comentaremos sobre seu poder durante o
curso também.

Até agora foi só teoria … sim, isto pode parecer um pouco chato, mas é
essencial para que possamos compreender como “a banda toca” neste
bundo maluco do microprocessador, que é na verdade, o coração do
processamento de qualquer computador.

Não sera explicado todos fundamentos num capítulo e depois a parte
prática, prefiro ir colocando experiência prática e ir explicando , afinal,
é assim que aprendemos a andar e a falar esta língua complicada que é
o português: Na prática !

Vamos começar com um exemplo simples, exibir uma frase no vídeo,
para isto não iremos compilar nada ! vamos inserir diretamente na
memória e ver “in natura” como a coisa acontece.

Para isto precisaremos do programa DEBUG.EXE que viveu até
o WindowsXP, então, você deve ter o WindowsXP rodando
provavelmente em uma máquina virtual
como VirtualBOX ou VMWare, ou pode ainda copiar
o DEBUG.EXEpara o Windows7 (ou superior) e utiliza-lo para
praticarmos.

 PRÁTICA

Vamos sair para o sub-mundo do sistema operacional, o mundo D.O.S.,
para construirmos nosso “HELLO WORLD“, para isto, estando no
windows,

E por que D.O.S. (prompt de comando) ? o problema todo é o seguinte,
assembly puro só pode ser construido em D.O.S., nesta primeria fase
do curso iremos tratar do assembly puro e depois assembly para

Windows (que exigeAPI para funcionar).
Para entender Assembly, vamos esquecer as exigências insanas do
Windows na construção do código.

um programa que vamos usar muito nesta primeira fase é o
DEBUG.EXE, que não está presente no Windows7, Windows Vista nem
WIndows 8, parece que o windows vai nos afastando cada vez mais da
raiz das coisas … e consequentemente do Assembly.

Teremos que montar uma plataforma de aprendizado, para isto
precisamos de um Windows que pelo menos não fique proibido-nos de
fazer as coisas em baixo nível ! o último Windows que foi bonzinho foi

o WIndows XP ! Sim, ele “ainda” tinha o DEBUG.EXE que iremos usar
nesta primeira versão, e não também não exigir assinatura de driver, e
vamos praticar neste então.

Uma boa técnica é a seguinte, baixar o VirtualBox e depois instalar
oWIndowsXP neste VirtualBox (ou VMWare), desta forma,
conseguiremos executar o Windows XP dentro
do Windows7 ou Windows 8.

- Download VirtualBox (se você ainda não tem).

Depois que instalar o VirtualBox e instalar o WIndows XP ,
executaremos o Windows XP e seguiremos os passos abaixo.

Entrando em modo D.O.S.

Clicar em Iniciar->Prompt de Comando ,
Então rodar o DEBUG:

No exemplo acima, após digitar DEBUG (e enter para passar a linha
de baixo), então digitamos a (enter) e digitamos as
instruções assembly descritas acima, espero que esteja claro que este

https://www.virtualbox.org/wiki/Downloads

ENTER vermelho se refira a apertar ENTER (ou apertar RETURN)
para encerrar a linha, eu não vou mais colocar este ENTER em
vermelho nos próximos exemplos.

Video YouTube sobre este exemplo

https://www.youtube.com/watch?v=rhnGz2bi608

Comentando linha a linha:

“-a “ Este (a) digitado dentro do DEBUG, informa ao DEBUG para
acessar a próxima memória disponível, que seria 100h, antigamente
todos programas .COM começavam em 100h, então ele já assume este
endereço como padrão, como não vamos fazer programas grandes

.EXE, podemos utilizar este endereço por enquanto.

“MOV AH,9 ” MOV é uma instrução que informa ao microprocessador
para mover o valor 9 para a parte alta do registrador AX, e o que seria
isto ?
Vamos entender: O Registrador AX possui 16 bits ! ou seja, ele também
pode ser dividido em 2 partes, podemos imaginá-lo como aquelas
células que se dividem e possuem vida própria, ou seja, este AX pode
ser dividido em dois registradores de 8 bits chamado AH e AL (AH =
parte alta, AL= parte baixa) (H=High, L=Low), antigamente nos
idos anos 80 (Bee Gees, ABBA … isto não é do seu tempo né ?) isto era
tudo que existia nos antigos computadores de 8 bits que andaram pelo
mundo como primeiro microcomputadores baseados em 8080 ou Z80,
eles tinham somente 8 bits (metade do AX). Logo no comecinho dos
anos 90 os computadores de 17 bits ficaram mais baratinhos, e
invadiram o mundo todo, então o registradorAX começou a ser
utilizado também, embora o recurso de utilizar metade dele (AH ou
AL) ainda é usado para diversos fins, inclusive o fim deste programa.
Este texto não acabou ! amos falar mais sobre esta linha, o que significa
este 9 colocado no AH ? ele informa o sistema simplesmente para
exibir uma frase quando for chamado a interrupção INT 21h logo na
frente.

“MOV DX,109″ Conforme se leu no texto anterior, o valor 9 em AH
informa o sistema que uma frase será impressa quando se chamar o

INT 21 logo a frente (ele só vai exibir quando a interrupção INT 21h for
chamada), mas … onde fica o tal texto que será exibido ? é este o
objetivo desta linha, indicar que local da memória esta a frase, que
seria o endereço 109, inserindo o número 109 em DX, já informamos o
sistema onde fica o tal texto afinal, o texto em questão é “MINHA
FRASE EM BAIXO NIVEL $” no endereço de memória 109.

“INT 21″ Este é o cara ! só quando esta interrupção é chamada a frase é
exibida, então nada adianta colocar os valore sem DX, em AH se esta
interrupção não for chamada, quando ela é acionada o sistema vai
pegar seu trabalho em AH (é onde ele fica sabendo o que fazer) e
depois sabendo que é para exibir um texto, vai pegar o texto em DX
que adivinha ? tem o valor 109 que é o endereço do texto.

“db “MINHA FRASE A SER EXIBIDA” Perceba o número que
aparece anes de db, é o endereço de memória 109, então o db (data
byte) somente ifnorma ao DEBUG para inserir o texto a frente byte a
byte começando no endereço 109, no final do texto vemos o dolar ($) e
porque ele está no final ? ele só i vai informar o fim do texto, se não for
inserido a interrrupção INT 21 vai imprimindo tudo que estiver na
frente do texto sem parar até o fim da memória ou até encontrar
um $ no caminho, ele delimita o fim mas não é impresso.
“INT 20″ Esta interrupção somente informa que o programa terminou,
sim ! em assembly precisamos informar que nossa festinha acabou, ela
pode ser comparada ao ” } ” do C ou do “end.” do pascal (ou delphi).

Bem, até agora só vimos teoria, não vimos nada pular na tela, nada
acontecer … vamos fazer algo acontecer, vamos RODAR o programa,
fazer ele exibir a tal frase, depois vamos gerar um programa com ele
SEM COMPILAR NADA ! como ? você se esqueceu que assembly é a
inlguagem do microprocessador ? e estamos escrevendo diretamente
para ele ? só compilamos quando escrevemos em linguagem de alto
nivel como C , Pascal, etc., e quando compilamos o que acontece ? se
transforma em assembly.

Para executar, basta digitar G=endereço, onde o endereço é o … 100h ,
então ficaria (g = 100).

Como visto abaixo:

Entendendo melhor este programinha aí, poderíamos descreve-lo em
algoritmo da seguinte forma:

AH = 9oque faz: 9 Informa o sistema que algo será exibido
DX = endereco oque faz: DX = endereço, DX sempre vai ter o endereço
de memória do que desejamos exibir
Chamar Interrupção 21hoque faz: Executa a operação descrita em AH
(que é 9, exibição de texto, mas poderia ser outro processamento)
Chamar Interrupção 20hoque faz: Termina o programa, sim ! a festa
termina aqui

Vamos continuar explorando mais os recursos do DEBUG, que tal
esperar uma tecla antes de terminar o programa ? o famoso INPUT !
Vamos utilizar uma interrupção diferente da velha 21h, vamos utilizar a
interrupção responsável pelo teclado, a interrupção 16h , e dando uma
olhadinha de como utilizar, vemos que precisamos inserir o valor 0 em

AH.

No exemplo acima, saímos da mesmice da impressão de texto, e lemos
uma tecla, para começar vemos o primeiro bloco com ah=9, dx=114 e o
velho int 21 para exibir o texto, logo após vemos algo diferente, AH=0 e
INT 16, que não exibe nada, apenas espera que uma tecla seja digitada,
após pressionamos qualquer tecla, novamente exibimos a mesma frase.

Para executar o programa, vemos lá o G=100 (comece a executar a
partir do endereço 100h, perceba que começa realmente em 100, olhe
lá o endereço 13D8:0100h , ignore este 13D8 , este é o segmento de
memória (explicarei mais tarde), e o segmento muda constantemente,
o que interessa é o OFFSET 100h mesmo).

Logo abaixo do G=100, vemos o texto exibido, aguarda uma tecla ser
pressionada, e novamente exibido,e depois a mensagem “Program

terminated normally“.

E o que significa tudo isto ? só prática mesmo ! para irmos nos
acostumando a usar o MOV para inserir valor em um registrador, e ver

como diferentes interrupções fazem coisas diferentes, prática é tudo
para sair fazendo sem precisar pensar, assim como fazemos quando
precisamos aprender uma língua nova … só praticando vamos ficando
fluente nisto,e a instrução MOV é a mais básica de todas, assim como é
utilizada para mover valores em registrador 8 bits (MOV AH, 9),
também é utilizada para 16 bits (MOV AX, 100h) e 32 bits (MOV

EAX, 100h).
Espero ter convencido que isto que foi apreendido é muito útil
didaticamente.

GERANDO UM PROGRAMA EXECUTÁVEL SEM COMPILAR

NADA !

Que tal gerar um programa ? até agora inserimos instruções na
memória, depois desligamos o PC e perdemos tudo ! ora … como
manter isto em um programa ? vamos então gerar através
do DEBUG mesmo.
Mas antes ! vamos entender como isto funciona (lá vem teoria !) :
Vamos entender como funciona a evolução de alguns executáveis do
Windows, pelo menos os principais:

Programas .COM (APPLE.COM)
Programas .EXE Comum (APPLE.EXE)
Programass .EXE Windows (APPLE.EXE)

Existem outros tipos de executáveis, mas vamos nos ater a estes que
marcaram a evolução dos executáveis, o primeiro é este .COM , este é o
inicio de tudo ! Quando Bill Gates comprou o D.O.S. para vender a IBM
como se fosse dele , já era assim ! o sistema rodava nos 640k básicos, e
tudo era feito ali, o sistema de contabilidade da empresa e até a folha
de pagamento.
Então os programas .COM não poderiam ser maior que 1 segmento de
memória, segmento é aquela memória que aparece a esqueda

(segmento : offset). Como vimos no exemplo acima, o valor do
segmento é sempre o mesmo, o que muda é o valor do offset que é a
extensão do segmento, podemos imaginar uma matriz também.

Com o tempo as pessoas começaram a precisar de mais memória, então
surgiu o.EXE , ele podia armazenar o programas além de um

segmento, isto foi formidável para fazer Vírus de Computador, porque o
vírus podia escolher um segmento para ele mesmo rodar, e colocar a
vítima em outro segmento, e isto organizava a programação para
o Vírus Maker, isto ainda é utilizado hoje nos Malware para Windows,
esta manipulação de segmentação que facilita a compreensão das
coisas.
Os programas EXE são bem diferentes dos programas .COM, porque
eles tem um cabeçalho para avisar os sistema como alocar o programa,
onde ele começa, onde ficam as seções de dados e imagens do
programas, isto não existe nos programas .COM, do inicio ao fim é o
programas em si ! enquanto em tipos .EXE existe um cabeçalho que
não faz parte das coisas que programamos.
Daí vem os .EXE para Windows, eles possuem ainda mais um
cabeçalho para informar o Windows como seu programas será alojado
na memória, etc.

No futuro iremos gerar programas .EXE em Assembly, e veremos ele
dissecado em nossa frente.

No momento vamos gerar um programa .COM , e por ser um tipo tão
simples, não vamos ter dor de cabeça.

No exemplo acima, criamos um arquivo chamado PROGRAMA.EXE,
vamos explicar o que fizemos ali encima:

Logo apos digitarmos o programa, isto já fizemos nos exemplos
anteriores, no endereço 142 digitamos ENTER sem digitar nada, então
o DEBUG sai no modo de edição de memória, daí utilizamos a
diretiva rcx , ela é utilizada para informar que tamanho terá nosso
programa, então colocamos o tamanho 42h (sim ! todo número que
vemos dentro do debg é HEXA !, portanto o número 42h significa 66

bytes no sistema decimal que conhecemos).
Depois digitamos n programa.com (n = nome do programa), colocando
programa.com a frente do “ n “, informamos que nome vamos utilizar.
O w informa o debug para gravar o programa que digitamos até o
tamanho 42h , utilizando o nome programa.com.
Logo depois, digitamos o nome do programa e vemos ele exibir a frase
“Ola mundao preto, aqu Bill Gates comecou sua fortuna !“.
Voialá ! Este programa não perdemos mais ! está gravado e até podemos ver

através do Windows Explorer.

Através do Windows Explorer, vemos o
programa PROGRAMA.COM criado, no tamanho veremos o
tamanho 1Kb, que na verdade é falso ! porque o tamanho gravado foi
de 66 bytes (42 hexa lembra ?), é estupidamente pequeno !
absurdamente pequeno ! que compilador gera um programa no
tamanho de 66 bytes ? mas o windows não consegue mensurar isto,e
 coloca 1Kb.

Vamos dar uma olhada na propriedades do programa através do
Windows mesmo:

Aí está ! agora o Windows mostrou certinho o tamanho absurdamente
pequeno de nosso programa.com, isto ocorre porque o executável não
carrega nenhuma tabela de alocação e é totalmente inserido
em Assembly sem passar pro nenhum compilador.

Bem, agora vamos rodar em Windows, veremos ele abrir uma tela e
fechar, e isto é … um pouco decepcionante, porque a frase aparece tão
rapidamente, que não vemos ela, que tal pedir para o programa esperar
um ENTER antes de terminar ? ahhh podemos ver a frase então, vamos
lá:

Aqui vemos nosso programa que exibe uma frase e… espera por uma
tecla apertada.

Rodando ele no Windows, vemos então a frase já que vai esperar algo
ser teclado.

Mais Instruções Assembly

Vamos aprender novas instruções e como utiliza-las , na verdade não
será aplicado todas as instruções, mas as principais; para aprender

precisamos saber o básico, mesmo o básico já exige bastante, e também
ficaremos um pouquinho aqui no ambiente do DEBUG.EXE para
aprendermos as instruções fundamentais.

Da mesma forma, quando aprendemos a dirigir um carro sempre
usamos um carrinho simples e popular, e também fazemos as aulas
básicas e fundamentais, suficiente para dirigirmos mais tarde um
BMW igual do Charlie Harper (two and half man), da mesma forma,
estaremos aptos a dirigir em qualquer trânsito do mundo, sem precisar
fazer aulas para dirigir no mundo todo para isto, é óbvio. Ficaremos
aqui no “fusquinha” do ambiente assembly para aprender o
fundamental, pelo menos no início.

Vamos agora ver como COMPARAR valores, e também como usar um
contador para medir quantas vezes se passa por uma rotina.

O programa a seguir vai fazer o seguinte:

1- Exibir a frase “Digite a Senha”
2- Esoerar a senha pelo teclado
3- Comparar a senha (tamanho de 1 Byte) , com a letra K , vai ser necessário

comparar o código do K e não o K , seu código é ASC é 75, e em hexa 4Bh
4- Se for a letra K, passo 7 para terminar o programa
5- Se não for K, verificar se chegamos a 5a. tentativa, se chegou pular para 7
6 – Voltar ao passo 1 e tentar novamente
7- Termine o Programa

Já de cara, percebemos que precisamos de um contador, ele é
necessário para contar quantas vezes estamos tentando, já que na 5a.
vez precisaremos terminar o programa.

Outra coisa que ainda não foi explicado, é a instrução de compração
“CMP” e a instrução para puilar se a comparação for verdaderia “JZ

endereço“.
Outra coisa nova que pode ser feito enquanto estamos construindo o
programa é a gravação em tamanho grande (R CX=200 por exemplo),
como ele é grande, também está mais sujeito a erros de programação,
para isto, podemos portanto gravar nosso programa com um tamanho
grande, já que não sabemos o tamanho total no final, então quando

estiver testado, ajustamos o tamanho do program (com R

CX=tamanho).

Aí esta o programa, as instruções novas estão destacadas em verde e
são elas:

CMP AL, 4B

Esta instrução compara AL (a parte low do AX) , compara portanto
com 4B , e o que será 4B ? é o código hexa de K ,
não cofunda, o código ASC de K é 75 , mas lá só vale o valor em hexa,
então convertendo 75 em hexa, temos 4Bh

E de onde aparece este valor em AL ? após um Int 16 (Instrução
anteriro), o sistema vai colocar em AL o valor digitado,
se for digitado a letra A, após o Int 16, AL vai valer 41h que é o código
de A.

JZ 118

Esta instrução significa (Jump se Zero), ou seja, se a comparação
anterior tiver sucesso, ou seja, se AL = 4B, então o Flag será setado em
Zero ! então basta comprar com JZ, e se for zero mesmo, ele salta para
o endereço 118, perceba que em no endereço 118 tem o INT 20 que é ?
fim de programa.

INC CX

Se você pensou em Incrementation , acertou ! ele incrementa 1 valor no
registrador CX , seria como (CX = CX + 1 ou CX++ como faríamos
em C), e porque incrementa 1 ? para ir contando as tentativas, perceba
que a instrução abaixo compara com 5.

CMP CX, 5

Esta é fácil ! já aprendemos o que faz o CMP, aqui ele compara CX co 5,
e se for 5 mesmo, ele salta para o fim do programa

JNZ 103

Esta também sabemos, intuitivamente podemos perceber que se JZ
salta para um endereço quando a comparação do CMP obteve sucesso,
utilizando JNZ ele salta se NÂO obteve sucesso, neste caso a
comparação da instrução anterior (CMP CX, 5) se CX não chegou a 5,
ele salta para o inicio do programa e começa tudo de novo.

Observe também que antes da frase tem o código: a,d,”Digite a

senha:” , este a é o 10 (line feed), e o d é o 13 (Return), ou seja, enquanto
o 10 pula para linha de baixo, o 13 volta para o inicio, é por isto que
toda vez que erramos ele pula para linha de baixo e refaz o texto.

No exemplo o programa também é gerado com o nome digite.com e
gravado no disco, podemos testa-lo no windows para ver o que
acontece.

Imagino que este programa começou a assustar, então está aqui uma
opção de fazer download deste digite.com.

DOWNLOAD DO EXECUTÁVEL:[digite.com]
SE PREFERIR (e seu anti-virus exigir !) PEGUE A VERSÃO

COMPACTADA:[digite.rar]

EDITANDO PROGRAMA PRONTO

Como alterar um programa já pronto ? vamos fazer isto utilizando o
DEBUG, que tal alterar aquela frase do programa anterror ? e alterar
também a senha, mudar deK para Y.
Primeiramente vamos ao código do Y maiúsculo, o código ASC é 89

decimal, então convertemos para Hexa que é 59h.
Para fazer a edição, basta digitar DEBUG digite.com , para se ver o
programa, vamos utilizar a diretiva U do DEBUG , podemos vê-lo no
help do DEBUG, para ver este Help pasta digitar ? no DEBUG.

http://www.viruscore.com/kantsoft/sqz-digitecom.html
http://www.viruscore.com/kantsoft/sqz-digiterar.html

Alterando o código da tecla senha de K para Y, para isto basta editar o
endereço10E com a diretiva “A 10E” e digitar
a mova instrução assembly “CMP al, 59″.

O próximo passo é alterar a frase exibida, para isto basta repetir o
último procedimento, porém com endereço diferente, desta vez para
alterar o endereço de memória 103:

Neste último exemplo foi demonstrado como alterar também o texto
do endereço119, bastando digitar DB “novo texto”.
Para gravar esta alteração basta seguir os procedimentos que usamos
quando criamos, utilizar a diretiva do debug W para gravar esta
alteração.

