Ale
ALE
B
Al

Aals
Aale
Hi@ [
Aiin g7
Hi1z
H113
AllE
Mg
H1lA OR

Assembly para PC

Assembly pratico para arquitetura PC (Intel 80XXX)

Autor
Dorival Afonso Cardozo
Programador Assembly Intel desde 1987
27 anos programando com Assembly 8 Bits, 16 Bits, 32 Bits e 64 Bits
Desenvolvendo projetos em 8080,8086,8088,80386

Curso de Assembly para PC, 16 Bits, 32 Bits, 64 Bits. Para Modo Real,
Windows, Kernel. Fase Avancada: Disassembly e Estudo de Virus de
Computador.

Este tutorial é extremamente pratico ! vocé vai aprender como escrever
seus primeiros programas em Assembly (Linguagem de Maquina) em
ambienteWindows e Modo Real.

Existe também videos apds cada se¢ao mostrando como executar o que
foi ensinado de forma préatica (ao vivo), reserve todo dia um tempo
para ler este tutorial e ir praticando.

Vocé vai perceber que este tutorial nao é sequencial, ou seja ... o velho
método de apresentar instrucao a instrucao e ir explicando .. ndo ! nao
é assim ! prefiro explicar os fundamentos e praticar com instrucoes
simples, para que o aprendizado possa ser intuitivo e escalar.

INTRODUCAO

Curso de Assembly para PC

Este curso online é um primeiro passo para entender a linguagem basica do
PC que utiliza Intel (80xx), depois deste curso espero que todos possam fazer
programas basicos e acompanhar a evolugdo do microprocessador Intel que
esta junto com o PC e 0 Windows/DOS a tantos anos.

Compilador NASM32, FASM

Este curso sera progressivo, entao vou postar uma matéria
eventualmente, juntamente com o video pratico de como fazer o que
foi aprendido na pratica, o compilador serda 0o MASM32 e o FASM (Flat
Assembly), os 2 compiladores sao bons, o primeiro (MASM32) nao tem
recurso 64 bits, mas conhecendo-o, é facil passar a usar o FASM (com
recrurso 64 bits), ja que o basico da linguagem é o que interessa, e

o MASM32 tem bastante exemplos, e isto é 6timo.

NASM

Sim, existe um outro chamado NASM, que é bem popular no Linux,
mas todos compiladores fazem o mesmo servigo, e fazem muitobem,
que é de montar o c6digo, e transformar em binario para o processador
executar.

O motivo pelo qual escolho 0o MASM32 para 32 bits € muito simples !
ele tem o maior arsenal de exemplos (que vi até agora) e é bem simples
de entender e usar, e tudo que se precisa quando esta comecando é
entender as coisas e nao sofrer tentando entender explicacoes.

8080/8086/8088/80XX

A historia da intel comeca a décadas atras, de fato ela passou a frente
de suas principais concorrentes que é a Motorola e a Zilog, a motoroloa
sempre foi, desde os anos 80 o processador mais bem falado do
mercado, esquentava menos, era mais barato,etc ... mas por uma destes
ironias do destino, nao foi parar no coracao do PC. E o motivo, 6bvio
que foi comercial, quando Bill Gates resolveu fechar acordo com a IBM
para fornecer o D.O.S. (Disk Operational System), tentou comprar o
CP/M da DIgital Research de Gary Kildal ... mas .. Kildall sequer
atendeu a equipe da Microsoft, que na época era um bando de rapazes
com cara de nerd, de uma empresa mintscula chamada Microsoft
depois de dar com cara na porta da Digital Research (que era maior
que a microsoft), procurou outro sistema, o que se torno o MS-DOS,
desta vez eles foram atendidos e pagaram 50 mi dolares pelo sistema
que depois foi melhorado e se transformou no PC-DOS da ibm, e
vendido pela microsoft com o nome de MS-DOS, comecava ai a fortuna
de Gates.

E o que tudo isto tem a ver com Microprocessador e Assembly ?
simples ! aquele sistema rodava no Intel 8086, era todo baseado em
interrupcoes de DOS e BIOS, o que hoje no WIndows chamamos de
IRP, que sao chamados do kernel do WIndows para teclado, mouse,
disco, etc ... no ambiente DOS chamava-se “Interrupcao de teclado ou
Interrupcao de disco,etc “.

Entao o sistema baseado em Intel foi parar no coracao do IBM-PC que
depois foi copiado a exaustao no mundo todo, e chegou no Brasil aos
milhoes via Paraguay, quem se lembra da época, sabe que 90% dos PCs

eram copias do original, que chegavam via Ponte da Amizade no
Paraguay e custava 20% do original .. ahh . eo Sistema Operaiconal,
l6gico, totalmente pirata também, que era o MS-DOS ou PC-DOS.

starting Mo-DOS. ..

E acabou assim o reinaldo do Z-80 Zilog , que foi o procesasdor usado
na Apolo 11, o foguete que chegou a lua, tudo foi programado em
Assembly Z-80 da empresa Zilog em 1969, alias .. a Nasa libero o
cddigo fonte em assembly, basta procurar na Internet, tudo em
Assembly, o pouso, a estabilidade , e a decolagem ... tudo em baixo
nivel Zilog, mas nao foi suficiente par adominar o mercado de PCs.

A Apolo11 lancada para pousar na lua era toa controlada com
Assembly Z-80 Zilog, cuja instrucoes sao bem semelhantes a
Intel do PC.

Ja a Motorola impera na industria, e muita gente dizia que a qualquer
momento os PCs rodariam Motorola e nao Intel, ledo engano, isto vem
sendo dito a décadas, da mesma forma que dizem que a linguagem
Cobol Morreu ... poisé !

E foi assim, sendo o coracao do sistema da Microsoft e IBM, a Intel
dominou o mundo e depois lan¢ou seu Intel Pentil , um versao superior
ao barramento nos anos 80, e por enquanto, é o assembly mai susado
no mundos dos PC. Porém, quem der uma olhada nas isntrugoes
assembly da Zilog, vai perceber o quanto ela é semelhante aos
registradores da Intel, e talvez seja esta , parte da razao do imperio da
Intel.

REGISTRADORES

Vamos comecar explicando registradores 16 Bits (ex. AX, BX, etc)
mesmo porque os registradores de 32 e 64 bits somente aumentam o
tamanho (6bvio !), entao sabendo eles, basta “bater o olho” para saber
como usar 32 ou 64 bits.

PC ? Sim, vamos comecar baseando os exemplo

no PC/WINDOWS/DOS, futuramente partiremos para o

mundo LINUX, ndo muda tanto, e esta é a vantagem de saber baixo
nivel, o que vai mudar entre DOS/WINDOWS e LINUXs3o as
chamados do sistema para realizar alguma tarefa, as operacoes de
movimento de valores, stack, segmentacdo de memaria, manipulacao de
registradores sao inerentes ao microprocessador Intel,e portanto sao
iguais para qualquer sistema operacional.

Juntamente com cada postagem, vou procurar Links que possam
adicionar conhecimento ao assunto, alias, percebi que muita coisa esta
em inglés, entdo vou aproveitar para ajudar o Wikipedia traduzindo
paginas sobre Baixo Nivel (Assembly) para Portugués para que exista
também uma versao em lingua portuguesa.

Para nao complicar, e comecar pelo fim, é bom ter

o WindowsXP instalado para comecarmos a praticar ... depois
passamos para topicos avancados utilizandoWindows7/Windows8 ,

o WindowsXP é util , porque podemos utilizar o DEBUG.EXE que ainda
esta contido nele, assim como manipulacao de areas que nao estarao
sob supervisao do sistema, coisa que comecou a ficar bem rigida a
partir do Windows vista, os Windows posteriores ja nao possuem

o DEBUG.EXE, ele sera 1til para praticarmos exemplos simples, este é
mais um motivo para ter oWindows XP rodando.

Logo no decorrer do curso, vamos utilizando um Debugger mais
avancado como oWinDBG, e até como fazer alguns programas para
anexar ao Kernel do Windows. Outra coisa, sim ! sou fa do Linux, e
muito mais que o Windows, mas como a maioria dos usuarios utilizam
Windows, entao o windows sera mais utilizado.

Como funcionam os Registradores Assembly

O registradores armazenam valores, assim como as variaveis que
utilizamos em nossa linguagem de programacao como (int valor =5)
em assembly ficaria (MOV AX, 5). No entanto, nao podemos sair
criando variaveis como em linguagem de alto nivel como C++, existe
um limite de registradores para colocar valores, assim como outros
especiais que indicam offset e segmentos de memoria como (CS,

DS por exemplo), eles indicam que segmento de memoria o programa
esta rodando, e ainda o IP que indica que posicao de memoria esta em
execucao no momento.

Em 32 bits, utilizaremos EAX no lugar de AX, mas aprendendo como
utilziar os registradores de 16 bis (AX,BX,CS,etc), fica facil entender
quando eles se transformam em 32 bits (EAX, EBX,ECX), e até quando
se transforma 64 bits.

AX.CX, DX, BX, SP, BP, SI, DI

Embora possamo atribuir a eles qualquer valor, alguns dele tem utilidade para
0 sistema, por exemplo, o SP (stack pointer) é utilizado guardar o valor no
Stack, o que é Stack ? € uma area da memdria onde sdo gravado valores via
PUSH, POP, CALL por exemplo, (veremos isto mais tarde)

Ainda existem mais registradores de segmento:

CS, DS, ES, FS, GS, SS

Assim como os registradores descritos anteriormente, alguns deles séo
utilizados pelo ssitema como por exemplo o principal deles (CS Code
Segment), ele vai ter o valor exatamente do segmento da memoria que o
programa atual esta rodando (também veremos isto no decorrer do curso).
Existe também registradores extras chamados MMX que foi adicionado
em meados de 1997, e seu poder é fabuloso ! ele permite manipulacao
de memoria grafica de uma forma tao rapida que pode ser cofundida
com uma gravacao analogica, comentaremos sobre seu poder durante o
curso também.

Até agora foi s6 teoria ... sim, isto pode parecer um pouco chato, mas é
essencial para que possamos compreender como “a banda toca” neste
bundo maluco do microprocessador, que € na verdade, o coracao do
processamento de qualquer computador.

Nao sera explicado todos fundamentos num capitulo e depois a parte
pratica, prefiro ir colocando experiéncia pratica e ir explicando , afinal,
é assim que aprendemos a andar e a falar esta lingua complicada que é
o portugués: Na pratica !

Vamos comecar com um exemplo simples, exibir uma frase no video,
para isto ndo iremos compilar nada ! vamos inserir diretamente na
memoria e ver “in natura” como a coisa acontece.

Para isto precisaremos do programa DEBUG.EXE que viveu até
o WindowsXP, entao, vocé deve ter o WindowsXP rodando
provavelmente em uma maquina virtual

como VirtualBOX ou VMWare, ou pode ainda copiar

o DEBUG.EXEpara o Windows7 (ou superior) e utiliza-lo para
praticarmos.

PRATICA

Vamos sair para o sub-mundo do sistema operacional, o mundo D.O.S.,
para construirmos nosso “HELLO WORLD¥, para isto, estando no
windows,

E por que D.O.S. (prompt de comando) ? o problema todo é o seguinte,
assembly puro s6 pode ser construido em D.O.S., nesta primeria fase
do curso iremos tratar do assembly puro e depois assembly para
Windows (que exigeAPI para funcionar).

Para entender Assembly, vamos esquecer as exigéncias insanas do
Windows na construcao do cédigo.

um programa que vamos usar muito nesta primeira fase é o
DEBUG.EXE, que nao esta presente no Windows7, Windows Vista nem
Windows 8, parece que o windows vai nos afastando cada vez mais da
raiz das coisas ... e consequentemente do Assembly.

Teremos que montar uma plataforma de aprendizado, para isto
precisamos de um Windows que pelo menos nao fique proibido-nos de
fazer as coisas em baixo nivel ! o altimo Windows que foi bonzinho foi

o WIndows XP ! Sim, ele “ainda” tinha o DEBUG.EXE que iremos usar
nesta primeira versao, e nao também nao exigir assinatura de driver, e
vamos praticar neste entao.

Uma boa técnica é a seguinte, baixar o VirtualBox e depois instalar
oW IndowsXP neste VirtualBox (ou VMWare), desta forma,
conseguiremos executar o Windows XP dentro

do Windows7 ou Windows 8.

- Download VirtualBox (se vocé ainda nao tem).

Depois que instalar o VirtualBox e instalar o WIndows XP ,
executaremos o Windows XP e seguiremos os passos abaixo.

Entrando em modo D.O.S.

Clicar em Iniciar->Prompt de Comando
Entdo rodar o DEBUG:

EX Administrador: Prompt de Comando - debug El[

Microzoft Windows [verzdo b6.1.760811]
Copyright <c>» 2009 Microsoft Corporation. Todoz os direitos reservados.

C:wUzerssdorival>debuy

@188 mov ah,.?

8182 mov dx. 1689

@15 int 21

:A1A7? int 28

:gigg db "MINHA FRASE EM BAIX0O MIVEL 5"

No exemplo acima, apos digitar DEBUG (e enter para passar a linha
de baixo), entdao digitamos a (enter) e digitamos as
instrucoes assembly descritas acima, espero que esteja claro que este

https://www.virtualbox.org/wiki/Downloads

ENTER vermelho se refira a apertar ENTER (ou apertar RETURN)
para encerrar a linha, eu nao vou mais colocar este ENTER em
vermelho nos proximos exemplos.

Video YouTube sobre este exemplo

https://www.youtube.com/watch?v=rhnGz2bi608

Comentando linha a linha:

“-a “ Este (a) digitado dentro do DEBUG, informa ao DEBUG para
acessar a proxima memoria disponivel, que seria 100h, antigamente
todos programas .COM comecavam em 100h, entao ele ja assume este
endereco como padrao, como nao vamos fazer programas grandes
.EXE, podemos utilizar este endereco por enquanto.

“MOV AH,9 ” MOV é uma instrucao que informa ao microprocessador
para mover o valor 9 para a parte alta do registrador AX, e o que seria
isto ?

Vamos entender: O Registrador AX possui 16 bits ! ou seja, ele também
pode ser dividido em 2 partes, podemos imagina-lo como aquelas
células que se dividem e possuem vida propria, ou seja, este AX pode
ser dividido em dois registradores de 8 bits chamado AH e AL (AH =
parte alta, AL= parte baixa) (H=High, L=Low), antigamente nos

idos anos 80 (Bee Gees, ABBA ... isto nao é do seu tempo né ?) isto era
tudo que existia nos antigos computadores de 8 bits que andaram pelo
mundo como primeiro microcomputadores baseados em 8080 ou Z80,
eles tinham somente 8 bits (metade do AX). Logo no comecinho dos
anos 90 os computadores de 17 bits ficaram mais baratinhos, e
invadiram o mundo todo, entao o registradorAX comecou a ser
utilizado também, embora o recurso de utilizar metade dele (AH ou
AL) ainda é usado para diversos fins, inclusive o fim deste programa.
Este texto nao acabou ! amos falar mais sobre esta linha, o que significa
este 9 colocado no AH ? ele informa o sistema simplesmente para
exibir uma frase quando for chamado a interrup¢ao INT 21h logo na
frente.

“MOYV DX,109"” Conforme se leu no texto anterior, o valor 9 em AH
informa o sistema que uma frase sera impressa quando se chamar o

INT 21 logo a frente (ele s6 vai exibir quando a interrupg¢ao INT 21h for
chamada), mas ... onde fica o tal texto que sera exibido ? é este o
objetivo desta linha, indicar que local da memoria esta a frase, que
seria o endereco 109, inserindo o nimero 109 em DX, ja informamos o
sistema onde fica o tal texto afinal, o texto em questao é “MINHA
FRASE EM BAIXO NIVEL $” no endereco de memoria 109.

“INT 21" Este é o cara ! s6 quando esta interrupcao é chamada a frase é
exibida, entdo nada adianta colocar os valore sem DX, em AH se esta
interrupcao nao for chamada, quando ela é acionada o sistema vai
pegar seu trabalho em AH (é onde ele fica sabendo o que fazer) e
depois sabendo que é para exibir um texto, vai pegar o texto em DX
que adivinha ? tem o valor 109 que é o endereco do texto.

“db “MINHA FRASE A SER EXIBIDA” Perceba o nimero que
aparece anes de db, é o endereco de memoria 109, entao o db (data
byte) somente ifnorma ao DEBUG para inserir o texto a frente byte a
byte comecando no endereco 109, no final do texto vemos o dolar ($) e
porque ele esta no final ? ele s6 i vai informar o fim do texto, se nao for
inserido a interrrupcao INT 21 vai imprimindo tudo que estiver na
frente do texto sem parar até o fim da memoria ou até encontrar

um $ no caminho, ele delimita o fim mas nao é impresso.

“INT 20" Esta interrup¢ao somente informa que o programa terminou,
sim ! em assembly precisamos informar que nossa festinha acabou, ela
pode ser comparada ao ” } ” do C ou do “end.” do pascal (ou delphi).

Bem, até agora s6 vimos teoria, nao vimos nada pular na tela, nada
acontecer ... vamos fazer algo acontecer, vamos RODAR o programa,
fazer ele exibir a tal frase, depois vamos gerar um programa com ele
SEM COMPILAR NADA ! como ? voceé se esqueceu que assembly é a
inlguagem do microprocessador ? e estamos escrevendo diretamente
para ele ? s6 compilamos quando escrevemos em linguagem de alto
nivel como C , Pascal, etc., e quando compilamos o que acontece ? se
transforma em assembly.

Para executar, basta digitar G=endereco, onde o endereco é o ... 100h ,
entao ficaria (g = 100).

Como visto abaixo:

BX Administrador: Prompt de Comando - debug

C:~UIRUSC™1~dimgcur >debug

A1 mov ah,?

tA182 mov dx. 189

@185 int 241

@187 int 28

:@18? db "MIMHA FRASE EM BAIXO MNIVEL 5°

19126
=108
MINHA FRASE EM BAIX0 NIVEL

Program terminated normally

Entendendo melhor este programinha ai, poderiamos descreve-lo em
algoritmo da seguinte forma:

AH = 9oque faz: 9 Informa o sistema que algo sera exibido

DX = endereco oque faz: DX = endereco, DX sempre vai ter o endereco
de memoria do que desejamos exibir

Chamar Interrupcdo 21hoque faz: Executa a operacao descrita em AH
(que é 9, exibicao de texto, mas poderia ser outro processamento)
Chamar Interrupgédo 20hoque faz: Termina o programa, sim ! a festa
termina aqui

Vamos continuar explorando mais os recursos do DEBUG, que tal
esperar uma tecla antes de terminar o programa ? o famoso INPUT !
Vamos utilizar uma interrupcao diferente da velha 21h, vamos utilizar a
interrupcao responsével pelo teclado, a interrupcao 16h , e dando uma
olhadinha de como utilizar, vemos que precisamos inserir o valor 0 em
AH.

F =

BN Administrador: Prompt de Comando - debug E@

:A18A mov ah.?
8182 mov dx.114
@185 int 21
:0187 mov ah.@
:@18? int 16
818 mov ah.¥
A1AD movw dx. 114
8118 int 21
@112 int 28

:@1i4 db "Wou aparecer 2 vezes ¥ 5"
t@12C

—g=1808
UJou aparecer 2 vezes t Uou aparecer 2 vezes |
Program terminated normally

No exemplo acima, saimos da mesmice da impressao de texto, e lemos

uma tecla, para comecar vemos o primeiro bloco com ah=9, dx=114 e o
velho int 21 para exibir o texto, logo ap6s vemos algo diferente, AH=0 e
INT 16, que nao exibe nada, apenas espera que uma tecla seja digitada,
apos pressionamos qualquer tecla, novamente exibimos a mesma frase.

Para executar o programa, vemos 14 0 G=100 (comece a executar a
partir do endereco 100h, perceba que comeca realmente em 100, olhe
14 o0 endereco 13D8:0100h , ignore este 13D8 , este € 0 segmento de
memoria (explicarei mais tarde), e o segmento muda constantemente,
o que interessa ¢ o OFFSET 100h mesmo).

Logo abaixo do G=100, vemos o texto exibido, aguarda uma tecla ser
pressionada, e novamente exibido,e depois a mensagem “Program
terminated normally*.

E o que significa tudo isto ? s6 pratica mesmo ! para irmos nos
acostumando a usar o MOV para inserir valor em um registrador, e ver

como diferentes interrupcoes fazem coisas diferentes, pratica é tudo
para sair fazendo sem precisar pensar, assim como fazemos quando
precisamos aprender uma lingua nova ... s6 praticando vamos ficando
fluente nisto,e a instru¢ao MOV ¢ a mais basica de todas, assim como é
utilizada para mover valores em registrador 8 bits (MOV AH, 9),
também é utilizada para 16 bits (MOV AX, 100h) e 32 bits (MOV
EAX, 100h).

Espero ter convencido que isto que foi apreendido é muito ttil
didaticamente.

GERANDO UM PROGRAMA EXECUTAVEL SEM COMPILAR
NADA !

Que tal gerar um programa ? até agora inserimos instrucoes na
memoria, depois desligamos o PC e perdemos tudo ! ora ... como
manter isto em um programa ? vamos entao gerar através

do DEBUG mesmo.

Mas antes ! vamos entender como isto funciona (14 vem teoria !) :
Vamos entender como funciona a evolucao de alguns executaveis do
Windows, pelo menos os principais:

Programas .COM (APPLE.COM)
Programas .EXE Comum (APPLE.EXE)
Programass .EXE Windows (APPLE.EXE)

Existem outros tipos de executaveis, mas vamos nos ater a estes que
marcaram a evolucao dos executaveis, o primeiro é este . COM , este é o
inicio de tudo ! Quando Bill Gates comprou o D.O.S. para vender a IBM
como se fosse dele , ja era assim ! o sistema rodava nos 640k basicos, e
tudo era feito ali, o sistema de contabilidade da empresa e até a folha
de pagamento.

Entao os programas .COM nao poderiam ser maior que 1 segmento de
memoria, segmento € aquela memoria que aparece a esqueda

(segmento : offset). Como vimos no exemplo acima, o valor do
segmento é sempre o mesmo, o que muda € o valor do offset que é a
extensao do segmento, podemos imaginar uma matriz também.

Com o tempo as pessoas comecaram a precisar de mais memoria, entao
surgiu 0.EXE , ele podia armazenar o programas além de um

segmento, isto foi formidavel para fazer Virus de Computador, porque o
virus podia escolher um segmento para ele mesmo rodar, e colocar a
vitima em outro segmento, e isto organizava a programacao para

o Virus Maker, isto ainda ¢ utilizado hoje nos Malware para Windows,
esta manipulacio de segmentacao que facilita a compreensao das
coisas.

Os programas EXE sdao bem diferentes dos programas .COM, porque
eles tem um cabecalho para avisar os sistema como alocar o programa,
onde ele comeca, onde ficam as se¢Oes de dados e imagens do
programas, isto nao existe nos programas .COM, do inicio ao fim é o
programas em si ! enquanto em tipos .EXE existe um cabecalho que
nao faz parte das coisas que programamos.

Dai vem os .EXE para Windows, eles possuem ainda mais um
cabecalho para informar o Windows como seu programas sera alojado
na memoria, etc.

No futuro iremos gerar programas .EXE em Assembly, e veremos ele
dissecado em nossa frente.

No momento vamos gerar um programa .COM , e por ser um tipo tao
simples, nao vamos ter dor de cabeca.

BN Administrador: Prompt de Comando EI@

m | »

mov ah.9
mov dx.189
int 21

int 28
db "0la mundac preto, agui Bill Gates comecou sua fortuna ¥ 5"

—n programa.com
—u
Writing 88042 bytes
—d

C:™wasm>programa

0la mundao preto, agui Bill Gates comecou zua fortuna *
Cowaszm>

Cowaszm>

Cowaszm>

No exemplo acima, criamos um arquivo chamado PROGRAMA.EXE,
vamos explicar o que fizemos ali encima:

Logo apos digitarmos o programa, isto ja fizemos nos exemplos
anteriores, no endereco 142 digitamos ENTER sem digitar nada, entao
o DEBUG sai no modo de edi¢ao de memoria, dai utilizamos a
diretiva rcx , ela é utilizada para informar que tamanho tera nosso
programa, entao colocamos o tamanho 42h (sim ! todo niimero que
vemos dentro do debg é HEXA !, portanto o nimero 42h significa 66
bytes no sistema decimal que conhecemos).

Depois digitamos n programa.com (n = nome do programa), colocando
programa.com a frente do “ n , informamos que nome vamos utilizar.
O w informa o debug para gravar o programa que digitamos até o
tamanho 42h , utilizando o nome programa.com.

Logo depois, digitamos o0 nome do programa e vemos ele exibir a frase
“Ola mundao preto, aqu Bill Gates comecou sua fortuna !“.

Voiala ! Este programa nao perdemos mais ! esta gravado e até podemos ver
através do Windows Explorer.

§uv| . v Computador » 05(C) » asm

Organizar = Incluir na biblioteca - Compartilhar com - Grawvar Mow:
& os(c) « Nome Taranho Data de modificac.. T
a4 2f3dda595c831 .)
= — [=5] PROGRAMA 28/03/2013 01:22 A
. Android
J artigos L
. @sm
, atool
@ Backup 3

Através do Windows Explorer, vemos o

programa PROGRAMA.COM criado, no tamanho veremos o
tamanho 1Kb, que na verdade é falso ! porque o tamanho gravado foi
de 66 bytes (42 hexa lembra ?), é estupidamente pequeno !
absurdamente pequeno ! que compilador gera um programa no
tamanho de 66 bytes ? mas o windows nao consegue mensurar isto,e
coloca 1Kb.

Vamos dar uma olhada na propriedades do programa através do
Windows mesmo:

Mome Tamanho Data de modificag... Tipo

"] PROGRAMA 1KB 28/03/2013 01:22 Aplicative do M5-DO5
7| Propriedades de PROGRAMA =
| Diversos I Seguranca | Detalhes | Versdes Anterores
Geral | Programa I Fonte I Memdria | Tela
@ FROGRAMA
Tipo de

iy Aplicativo do MS-DOS (COM)

Descrigdo: PROGRAMA

Local: C:hasm

Tamanhao: b6 bytes (66 bytes)
Tamanho em

disco: 400 KB (4.056 bytes)

Criado em: Hoje, 28 de margo de 2013, 19 minutos atras

Modificado Hoje, 28 de margo de 2013, 19 minutos atras
em:

Acessado em: Hoje, 28 de margo de 2013, 19 minutos atras

Atributos: [[] Somente letura [Qeulto

Ai esta ! agora o Windows mostrou certinho o tamanho absurdamente
pequeno de nosso programa.com, isto ocorre porque o executavel nao
carrega nenhuma tabela de alocacdo e ¢ totalmente inserido
em Assembly sem passar pro nenhum compilador.

Bem, agora vamos rodar em Windows, veremos ele abrir uma tela e
fechar, e isto é ... um pouco decepcionante, porque a frase aparece tao
rapidamente, que nao vemos ela, que tal pedir para o programa esperar
um ENTER antes de terminar ? ahhh podemos ver a frase entao, vamos
la:

o

EX Administrador: Prompt de Comando

1B mov ah,.9
0182 mov dx.18d
@185 int 21
0187 mov ah.@
81892 int 16

tA1BB int 28
:@18D db “SEREI LIDO HO WINDOWS :=> 5¢
tE127

Aqui vemos nosso programa que exibe uma frase e... espera por uma
tecla apertada.

Rodando ele no Windows, vemos entao a frase ja que vai esperar algo
ser teclado.

& os () o Mome Data di
8. 23dda595¢831 —
=7 PROG2 28/03/
33
Android T Clasm2\PROG2.COM
artigos

m

25m SEREI LIDO NHO UINDOWS =3

atool

& Backup

Mais Instrucoes Assembly

Vamos aprender novas instrucoes e como utiliza-las , na verdade nao
sera aplicado todas as instrucoes, mas as principais; para aprender

precisamos saber o basico, mesmo o basico ja exige bastante, e também
ficaremos um pouquinho aqui no ambiente do DEBUG.EXE para
aprendermos as instrucoes fundamentais.

Da mesma forma, quando aprendemos a dirigir um carro sempre
usamos um carrinho simples e popular, e também fazemos as aulas
béasicas e fundamentais, suficiente para dirigirmos mais tarde um
BMW igual do Charlie Harper (two and half man), da mesma forma,
estaremos aptos a dirigir em qualquer transito do mundo, sem precisar
fazer aulas para dirigir no mundo todo para isto, é 6bvio. Ficaremos
aqui no “fusquinha” do ambiente assembly para aprender o
fundamental, pelo menos no inicio.

Vamos agora ver como COMPARAR valores, e também como usar um
contador para medir quantas vezes se passa por uma rotina.

O programa a seguir vai fazer o seguinte:

1- Exibir a frase “Digite a Senha”

2- Esoerar a senha pelo teclado

3- Comparar a senha (tamanho de 1 Byte) , com a letra K , vai ser necessario
comparar o codigo do K e ndo 0 K, seu codigo é ASC é 75, e em hexa 4Bh
4- Se for a letra K, passo 7 para terminar o programa

5- Se néo for K, verificar se chegamos a 5a. tentativa, se chegou pular para 7
6 — Voltar ao passo 1 e tentar novamente

7- Termine o Programa

Ja de cara, percebemos que precisamos de um contador, ele é
necessario para contar quantas vezes estamos tentando, ja que na 5a.
vez precisaremos terminar o programa.

Outra coisa que ainda nao foi explicado, é a instrucao de compracao
“CMP” e a instrucao para puilar se a comparacao for verdaderia “JZ
endereco®.

Outra coisa nova que pode ser feito enquanto estamos construindo o
programa ¢ a gravacao em tamanho grande (R CX=200 por exemplo),
como ele é grande, também esta mais sujeito a erros de programacao,
para isto, podemos portanto gravar nosso programa com um tamanho
grande, ja que nao sabemos o tamanho total no final, entdo quando

estiver testado, ajustamos o tamanho do program (com R
CX=tamanho).

@148
@183
@186
@188
:@18Aa
tA1AC
:A18E
A11@
tH112

@113

mov cx,. @
mov dx. 119
mov ah.?
int 21

mov ah.A
int 16

cmp al.4h
j= 118

inc ox
cmp cx.5

:All6 jnz 183

@118 int 28

:@11Aa db agd,.'"Digite a senha:z$"
t@A12C

Al esta o programa, as instrucoes novas estao destacadas em verde e
sdo elas:

CMP AL, 4B

Esta instrucao compara AL (a parte low do AX) , compara portanto
com 4B , e o que sera 4B ? é o cddigo hexa de K,

nao cofunda, o codigo ASC de K é 75, mas la s6 vale o valor em hexa,
entao convertendo 75 em hexa, temos 4Bh

E de onde aparece este valor em AL ? ap6s um Int 16 (Instrucao
anteriro), o sistema vai colocar em AL o valor digitado,

se for digitado a letra A, apos o Int 16, AL vai valer 41h que é o c6digo
de A.

JZ 118

Esta instrucao significa (Jump se Zero), ou seja, se a comparacao
anterior tiver sucesso, ou seja, se AL = 4B, entdo o Flag sera setado em
Zero ! entao basta comprar com JZ, e se for zero mesmo, ele salta para
o endereco 118, perceba que em no endereco 118 tem o INT 20 que é ?
fim de programa.

INC CX

Se vocé pensou em Incrementation , acertou ! ele incrementa 1 valor no
registrador CX , seria como (CX = CX + 1 ou CX++ como fariamos

em C), e porque incrementa 1 ? para ir contando as tentativas, perceba
que a instrucao abaixo compara com 5.

CMP CX, 5
Esta é facil ! ja aprendemos o que faz o CMP, aqui ele compara CX co 5,
e se for 5 mesmo, ele salta para o fim do programa

JNZ 103

Esta também sabemos, intuitivamente podemos perceber que se JZ
salta para um endereco quando a comparacao do CMP obteve sucesso,
utilizando JNZ ele salta se NAO obteve sucesso, neste caso a
comparacao da instrucao anterior (CMP CX, 5) se CX nao chegou a 5,
ele salta para o inicio do programa e comeca tudo de novo.

Observe também que antes da frase tem o codigo: a,d,”Digite a

senha:” , este a ¢ 0 10 (line feed), e 0 d é o 13 (Return), ou seja, enquanto
0 10 pula para linha de baixo, o 13 volta para o inicio, é por isto que
toda vez que erramos ele pula para linha de baixo e refaz o texto.

No exemplo o programa também é gerado com o nome digite.com e
gravado no disco, podemos testa-lo no windows para ver o que
acontece.

i Mome

B digite

m Chdowncursolidigite.com

Digite a senha:
Digite a senha:
Digite a senha:

Imagino que este programa comecou a assustar, entao esta aqui uma
opcao de fazer download deste digite.com.

DOWNLOAD DO EXECUTAVEL:[digite.com] ~
SE PREFERIR (e seu anti-virus exigir !) PEGUE A VERSAO

COMPACTADA:[digite.rar]

EDITANDO PROGRAMA PRONTO

Como alterar um programa ja pronto ? vamos fazer isto utilizando o
DEBUG, que tal alterar aquela frase do programa anterror ? e alterar
também a senha, mudar deK para Y.

Primeiramente vamos ao codigo do Y maiuasculo, o codigo ASC é 89
decimal, entdao convertemos para Hexa que é 59h.

Para fazer a edicao, basta digitar DEBUG digite.com , para se ver o
programa, vamos utilizar a diretiva U do DEBUG , podemos vé-lo no
help do DEBUG, para ver este Help pasta digitar ? no DEBUG.

http://www.viruscore.com/kantsoft/sqz-digitecom.html
http://www.viruscore.com/kantsoft/sqz-digiterar.html

BN Administrador: Prompt de Comando - debug || == @

Cosasmorde g
e

[address]

range address

[range]

address [list]

range list

[=address] [addresses]
valuel valuez

port

[address] [drivel [firstzector] [numbher]
range address
[pathname]l [arglist]
port byte

[=addresz] [numbher]

aczemhle
COmpare

[regizter]

range list

trace [=address] [valuel

unaszsemble [range]

urite W [address] [drivel [firstsector] [numberl
allocate expanded memory "A [H#pages]

deallocate expanded memory %D [handle]l

map expanded memory pages #M [Lpagel]l [Ppagel [handlel
dizplay expanded memory status K5

regizter
zearch

]
G
D
E
F
G
H
I
L
M
N
0
P
Q
R
8
T
1]

Alterando o c6digo da tecla senha de K para Y, para isto basta editar o
enderecol0E com a diretiva “A 10E” e digitar
a mova instrucao assembly “CMP al, 59".

X Administrador: Prompt de Comando - debug digite.com

aszmrdebugy digite.comn

B?A86A0 CH . B804
Bai?a1 Dx.B119
B4@9

CDZ1

B488

CD1i6

3C4B

7486

41

83F?@5

75EB

ch2a

anaD

44

69

67

69

twasmrdebuy digite.com

Ui@aa
1454 :81680
1454:8103
1454 : 8106
14548108
14548100
1454 @1 8C
1454 :81AE
1454:8118
1454:8112
1454:8113
1454:8116
1454:8118

B?8A6AA
Bai9a1l
B4AY?
CDh21
B468
CD16
3C4B
7486
41
83F?@5
7o EB
ch2a

G . 8808
Di.@119

1454:811A
1 454:811C
1 454:811D
1 454:811E
1454:811F

CMP AL 5%

BrA8aa
Bai19@1
B4A?
CD21
B4AAa
CD16
3C59

G . 8808
Di. @119

1454:A11 4

O proximo passo é alterar a frase exibida, para isto basta repetir o
ultimo procedimento, porém com endereco diferente, desta vez para
alterar o endereco de memoria 103:

10
4: 31860 B?08HAE 0 ARANR
A1 B H [0 [i
186 B4H 0 f]
188 [
H1 B B4HH 0 Al
H1 B D16 f
11 1B F f H
[[[[1
1 A
[H ol F [
[H 1
[H 21 [
[A BAWD OR [
[A 4 P
[[, DE ,
[b DH i
[69 DH 69
q
i i BA BD 44 69 & 69 [
i 1 6 H 6 0 b b b8 b f 4 B8 B B0 BH
i A B8 B B8 B8 B AW WE-0A BB B8 BE B B0 B UE
i A B8 B B8 B8 B AW WE-0A BB B8 BE B B0 B UE
i A B8 B B8 B8 B AW WE-0A BB B8 BE B B0 B UE
i A B8 B B8 B8 B AW WE-0A BB B8 BE B B0 B UE
‘¥_ A B8 B B8 B8 B AW WE-0A BB B8 BE B B0 B UE
H A B8 B B8 B8 B AW WE-0A BB B8 BE B B0 WA U@
y A B8 B B8 B8 AW AW WE-0H

b (50
=

H1BE@ B?AAWAE 0 ARANR

A1 B H [0 [i

186 B4H 0 f]

188 [

H1 B B4HH 0 Al

H1 B D16 f

11 1B F f H

[[[[1

1 A

[H ol F [

[H 1

[H 21 [

[A BAWD OR [

[A 4 P

[D 69 DE ,

[b DH i

[69 DH 69

q

i i BA BD 44 69 & 69 [
i 1 6 H 6 0 b b b8 b f 4 B8 B B0 BH
i A B8 B B8 B8 B AW WE-0A BB B8 BE B B0 B UE
i A B8 B B8 B8 B AW WE-0A BB B8 BE B B0 B UE
i A B8 B B8 B8 B AW WE-0A BB B8 BE B B0 B UE
i A B8 B B8 B8 B AW WE-0A BB B8 BE B B0 B UE
‘¥_ A B8 B B8 B8 B AW WE-0A BB B8 BE B B0 B UE
H A B8 B B8 B8 B AW WE-0A BB B8 BE B B0 WA U@
y A B8 B B8 B8 AW AW WE-0H

CHMP AL.5%7

BY80AR MOU CX .B868
Bai9al MOU Dy.B119?
B4@A% MOU AH .82
CD21 INT

B480Q MOU

Chi6 INT

3ch9 CHMP

7486 JZ

41 INC

43F985 CHMP

7SER JNZ

cp2a INT

anap OR CL,.I[DI1]
44 IHC 5P

69 DB 69

67 DB 67

69 DB 69

DB "HOUA FRASE %"

Neste ultimo exemplo foi demonstrado como alterar também o texto
do enderecol19, bastando digitar DB “novo texto”.

Para gravar esta alteracao basta seguir os procedimentos que usamos
quando criamos, utilizar a diretiva do debug W para gravar esta
alteracao.

